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Anporamus——B CTarhe Ha OCHOBE YPABHEHMS COCTOSHHS JUIA PEAbHOrO I'asa PacCMOTPEHB
BOIIPOCHL CHAYKOR YTIOTHEHMN M IOJYYEHH BaKHeNIIHe COOTHOWNGHMS A BBICOKHX I
CBepXBHCOKUX 00Gsacteil NaBienuii.

NOMENCLATURE

w,  gas or vapour velocity, m/s;
v,  specific volume, m?/kg;
p.  pressure, kg/m?;
7, absolute temperature, °K;
z,  compressibility factor;

)
pr = —

RT\%]T | jeviation coefficients;

_ P (&
k2= g\or/,

R, gas constant, kg m/kg g;
x, index of real-gas adiabatic curve (“tem-

perature’’);

A, heat equivalent of work (= 1/427 kcal/
kg m);

cps heat capacity at constant pressure,
kealfkgg;

s,  entropy, kcal/kg g;

g,  gravity acceleration, m/s?;

p,  density, kg s?/m?;

k,  index of real-gas adiabatic curve;

@,  sonic velocity in real gas, m/s;

y,  ratio of sonic velocity in real gas to that
in ideal gas;

ger, critical velocity of real gas, m/s;

A, velocity coefficient;

n, exponent of real-gas adiabatic curve
(“volume™);

i enthalpy, kcal/kg;

ag,  sonic velocity in stationary gas.

IN GAs dynamics much attention is paid to the
problem of shock waves or attached shock. All

the difficulties, caused by the impossibility of
integrating the equations without introducing
discontinuities, are avoided by the theory of
shock waves [1]. The relationship between flow
parameters in front of and behind a shock wave
was expressed by Hugonio in terms of the
relation referred to as the equation of the shock-
wave adiabatic-curve. This relation is derived
on the basis of an energy equation, the law of
momentum change and an equation of state
for an ideal gas. Moreover, because of the sharp
increase in pressure during the shock wave there
naturally takes place some essential deviation
from the ideal-gas laws used to obtain the
equation of the shock-wave adiabatic-curve. As
an example, reference can be made to shock
waves in expanding nozzles of steam turbines
under variable operating conditions. The
Hugonio equation of a shock-wave adiabatic-
curve, applied to nozzles of modern high-
pressure steam turbines, cannot therefore ensure
reliable calculation results, In future, errors
appearing from the usage of the Hugenio
equation will be very considerable for turbines
using working agents considerably deviating
from ideal gases, for example, carbonic acid.

The above considerations make it necessary
to derive a new shock-wave adiabatic-curve
equation applied to real gases with arbitrary
parameters.

First of all, start with the energy equation for
an adiabatic process in differential form:
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Making use of the equation of state for a real
gas in the form

pv = zRT (2)

and taking into account that the compressibility
factor is a function of p and T, it may be written
that pv = f(p,T), then

of pr) ) g
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If we account for equation (3) equation (1)
assumes the form:
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For convenience of calculations for real gases
the deviation coefficients [2] are introduced

_ . p e :
py = RT (ap).’l' (5)

and
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up being used to write the adiabatic-curve
equation for a real gas in the following form:

T / aw=1/x )
g
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when the form of the relation, conforming to an
ideal gas, is preserved.

In equation (7) x, related to up and heat
capacity cp, is determined by the expression
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On the basis of equation (5) equation {4) takes
the form

w? 6f) RT
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For an entropy differential it may be written that
88 Ay
ds = (gr)pdT + (55)T dp
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or, bearing in mind equation (6)

a7 dp
Solving simultaneously equations (10) and (9}
we have
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Values in front of and behind a shock wave
will be denoted by suffixes 1 and 2.

Now transform the left-hand side of equation
(11} proceeding from the momentum law,
according to which, for an arbitrary state
equation, it is obtainable:

e Py = pw(ivy = ). (12)

Multiplying both parts of equation (12) by
(wy 4 wy), we have

Wy Wy

o
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or taking into account the continuity equation

(13)

P 7= paty

we obtain
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Wi — Wi = — o e B 14
v Y3 (P2 — py) {Pl pa, (14)
From equations (11) and (14), having regard to
(8) it follows
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In [2] it is shown that during integration
quantities up and x/(x ~ 1) may be considered
constant and in this case the integral mean
values may be replaced by the arithmetic mean
values.

Henceforward, the mean value of the coefficient
pr will be designated ir, and for convenience,
the multiplier x/(x — 1) is preserved without an
upper bar but it is however considered as an
average quantity within integration limits.
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Thus, integrating equation (15) with regard
for (2), we have

X
2gpr i R(T, — T)) — 2gRTy(z; — zy)r

X —

— (po — pl)(;f;+—:-). (16)
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The compressibility factors z, and z, being at
different pressures but at one and the same
temperature (7).

Furthermore, since according to equation (2)

P2
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equation (18) may be presented as
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After transformation, we multiply both parts
of the latter equation by p,/p, and obtain

P2 ({2x [FT— (21“22)T'x; l]
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— x + l}.(x— 1)‘1.—;—1g —ly)x{[x(Z.gf
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Thus, the equation of the shock-wave adia-
batic-curve applied to a real gas is obtained.
The expression for the ratio of densities is
presented as follows:
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From the state equation for a real gas we
obtain the following for the temperature ratio
TP ;1 2
i, py p 2z
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The relations of temperatures and densities
in a shock wave are connected by

JA—
—x 1}.(x- 11— ;’—:) x {[x(z’z‘-:
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Equations (18), (19) and (20) obtained for a
real gas easily assume the form, usual in the
shock-wave theory, in application to an ideal
gas when passing to the condition jir = z;, = z,
=1 and x = k. In this case the following well-
known relations are obtained
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With regard to the employment of equations
(18), (19) and (20) it is necessary to determine
first of all the numerical values of ar, z,, z, and x.
It has already been mentioned that the integral
mean of jir may be replaced by the arithmetic
mean, i.e.

ar =% X [(prh + (ur)l.

The formula for pr is obtained from expression
(5) in which the partial derivative is determined
by differentiating equation (2). As a result, the
value of pur assumes the form [2]

. 0z
!
In a similar fashion from equation (7) by
differentiating equation (2) we obtain
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Bp = Z+

are determined by graphical differentiation.

To determine both fir, 7;, z, and x according
to formula (8) where p, enters, it is necessary
to possess initial and final data on pressures and
temperatures, essential for using a compressibil-
ity diagram. Therefore, to the firstapproximation
these values are defined from equations (21),
{22) and (23) applied to an ideal gas. Then, upon
calculation of the above coefficients we turn to
equations (18), (19) and (20), using thus the
method of successive approximations. To find
the heat capacity c¢p, entfering into equation
(8), it is possible to make use of the diagram
given in [3], in which the relation between the
correction ¢p — ¢p, and the above parameters
is presented.

When using the shock-wave adiabatic-curve
equation applied to water vapor, the coefficients
T, pp, Z, and z, are found from the tables for
superheated steam [4]. The compressibility
factors are determined as

st

e
Zy == lj"l‘ and Zy -R_T:i;

U RT, ®

the parameters p, v and T being tabular. The
same tabular data may be used when determining
the partial derivatives (¢z/ép)r and (9z/8T)p and,
consequently, ur and pp. The heat capacity ¢,
up to 300 atm may be taken from Vukalovich’s
tables [5] and above 300 atm, from the experi-
mental data [6] over a wide range of pressures
and temperatures.

The relations obtained may be also expressed
in terms of the velocity coefficient in front of a
shock wave, i.e. A,. Between the velocity
coeflicients in front of and behind a shock wave
in a real gas there exists the same ratio as in the
case of an ideal gas, viz.:

A g = 1. Q4)

We will derive relation (24) for a real gas.
When a medium passes through a shock-wave
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front {7], the isentropic equation of the medium,
considered as a real gas, is presented in just the
same form as for the ideal gas, namely:

pz"g == cONSt, (25

It is necessary to mention that the integral
mean of the isentropic index of a real gas 7 in
equation (25) and that of the exponent x in
equation (7) possess different significance. As was
shown in [2], the quantity “#” in equation (25)
represents a “‘volumetric” exponent of an
adiabatic curve. The writing of equation (7) has
an advantage over equation (25). since the
quantity x/(x — 1} is subjected to changes
considerably less than 7", and this is of great
importance if integrating the corresponding
expressions, for example, equation (13).

In writing down equation {25) we employ as
qualitative a derivative as possible in principle
for a real gas, to illustrate condition (24). the
analytical value of the exponent “n” not being
used in calculation equation.

According to equation (25) we can write

(,i;: = — {t{ (263
and taking mto account that
£G4 sy
where « is the sonic velocity, we have
a? == gnpr. (28)
In [8] it was shown that
a* = yikgRT {29)
where according to the values of py and uyp
},‘3 s 72 }jfc(p{r — }ﬁx ‘ pﬂp) - {3{}}

From equations (28) and (29) taking equation (2}
into account the following is obtainable:

S x—1
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equation (26) it may be written that di =
- Anp dv. Hence, taking into account equation
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(27) upon integration and transformation we
obtain

— = A 1 (p1vy — pave). (32)

On the basis of equation (1) we have

wi —wl @
g P (P11 — pave)-

Hence, according to equation (28) the energy
equation may be written as follows

(33)

+H_ a3 +w2 a® +w2
n—l i— 1 2 na—1 2
_ %
-1 (34)

where a, is the sonic velocity in stationary gas.
When w = a. we have a = ar, then
a+41
2
where a.r is the critical velocity.

From equation (35) taking into account (28)
we have

(33)

2 — g2
a} = a? .

a+1 5 n—1
= 5 PG T e P
i1 i —
P = =55 py -4z — 27 pw}  (36)
or
i1+ 1
Py — P =4, —2’3*(/’2 — p1)
a—1
+ —zﬁ—(h” — pa).
From equations (12) and (13) we have
— 1= piWi — paWi. (37

Consequently, in this case equation (36) assumes

the form
PP g2 (38)
P2 — P1

On the other hand, on the basis of equation
(13) equation (37) may be also presented as in [9]

Po — P1 = paWaWy — pywiWy = wiwo(py — py). (39)
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From equations (38) and (39) we have
Wy . Wy = @2, (40)
or
A . A, =1, i.e. condition (24) is proved.
The relationship between A, and A, in front of
and behind a shock wave so obtained makes it

possible to present equations (18), (19) and (20)
in terms of A,. Taking into account that

Pr_M_ A
P W A
we obtain
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(43)

+ 1] k=1 — Ag}ﬂl.

It has been already mentioned that the
expression x/(x — 1) is understood as the
arithmetic mean, i.e.

x 1/ x Xg
Rl P R

consequently,

x(2x5 — 1) — x,
SR 49
In all our equations the quantity x is defined by
relation (44) and to calculate both x; and x, it is
necessary only to use equation (8).
When passing from a real to an ideal gas, for
which gr =z, = z, = 1 and x = k, equations
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(41) and (43) assume the form well-known in gas
dynamics [10]

P2\ (., Kk-—1T1y ¢ k=1 oy
(), = () (o)
(45)
T2 / k — 1 1) . k — 1 A
(Tl,),-d‘ (1 Thk1 /\12:1) (1 Tk ’\id)
(46)

In conclusion it should be noted that the
ratios obtained for a direct shock-wave make it
possible to study easily shock waves with the
front shock-wave inclined to the direction of
flow, i.e. to investigate oblique shock-waves.
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Abstract—In the present paper problems on shock waves are considered on the basis of the equation
of state, and important relations for high and superhigh pressure regions are obtained.

Résumé—Cet article considére les ondes de choc a partir de I'équation d’état, et établit des relations
importantes pour des régions de pressions élevées et trés élevées.

Zusammenfassung—In der Arbeit werden Stosswellenprobleme auf der Basis der Zustandsgleichung
betrachtet und wichtige Beziehungen fiir hohe und superhohe Druckbereiche erhalten.



