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Axiaow3qrfz-B CTaTbe Ha OCK~B~ ypasnezzmz C~CTORHH~~ any peanbxroro rasa paccMoTpeHhr 
BOIlpOCbI CKa”lXOB J’IlJIOTHeHti U IIOJIJWHLI Ba?Kti&IIIW2 COOTHOKIeHWR ,lVIfl BbXCOKYlX Zl 

CBt!pXBbICOKAX 06JIaCTO8 @iBJIOHHti. 

NOMENCLATURE 

W, gas or vapour velocity, mjs ; 
V, specific volume, ms/kg; 

Pt pressure, kg/m”; 
T, absolute temperature, “K; 
r, compressibility factor; 

deviation coefficients; 

gas constant, kg m/kg g; 
index of real-gas adiabatic curve (“tem- 
perature”) ; 
heat equivalent of work (= f/427 kcal/ 
kg m); 
heat capacity at constant pressure, 
kcal/kg g; 
entropy, kcaljkg g; 
gravity acceleration, m/s2 ; 
density, kg s2/m4; 
index of real-gas adiabatic curve; 
sonic velocity in real gas, m/s; 
ratio of sonic velocity in real gas to that 
in ideal gas; 
critical velocity of real gas, m/s; 
velocity coefbcient ; 
exponent of real-gas adiabatic curve 
(“volume’“) ; 
enthalpy, kcal /kg ; 
sonic velocity in stationary gas. 

IN GAS dynamics much attention is paid to the 
problem of shock waves or attached shock. AI1 

the difficulties, caused by the impossibility of 
integrating the equations ~thout introduc~g 
discontinuiti~s, are avoided by the theory of 
shock waves [l f. The relationship between flow 
parameters in front of and behind a shock wave 
was expressed by Hugonio in terms of the 
relation referred to as the equation of the shock- 
wave adiabatic-curve. This relation is derived 
on the basis of an energy equation, the law of 
momentum change and an equation of state 
for an ideal gas. Moreover, because of the sharp 
increase in pressure during the shock wave there 
naturally takes piace some essential deviation 
from the ideal-gas laws used to obtain the 
equation of the shock-wave adiabatic-cube. As 
an example, reference can be made to shock 
waves in expanding nozzles of steam turbines 
under variable operating conditions. The 
Hugonio equation of a shock-wave adiabatic- 
curve, applied to nozzles of modern high- 
pressure steam turbines, cannot therefore ensure 
reliable calculation results. In future, errors 
appearing from the usage of the Hugonio 
equation will be very considerable for turbines 
using working agents considerably deviating 
from ideal gases, for example, carbonic acid. 

The above considerations make it necessary 
to derive a new shock-wave adiabatic-curve 
equation applied to real gases with arbitrary 
parameters. 

First of all, start with the energy equation for 
an adiabatic process in differential form: 

dg+ndp=O. (1) 
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Making use of the equation of state for a real or, bearing in mind equation (6) 
gas in the form 

dT 
pu = zRT (21 cp -T = AR pp 

dP 

P . 
f tOI 

and taking into account that the compressibility s 1 
factor is a function of p and T, it may be written 

o ving simultaneously equations (10) and (9) 
we have 

that po =f(p,T), then 

(z&dP_ I”~~~]Tdp-_P~~~)~dpTI’dp. ~G’-‘“l~i== 2g[ [~~~)Td/)~~~.~dT~.(III 

(3) 
Values in front of and behind a shock wave 

will be denoted by suffixes 1 and 2. 
If we account for equation (3) equation (I) Now transform the left-hand side of equation 
assumes the form: (1 I) proceeding from the momentum lava, 

according to which, for an arbitrary state 
(4) equation, it is obtainable: 

For convenience of calculations for real gases 
/?g -- p1 =x ,LW(W, Il’J. (12) 

the deviation coefficients [2] are introduced Multiplying both parts of equation (12) by 
(IV1 -- U-J. we have 

(51 
(+ wa)( WI + w,) ‘~-:z (pz 

and 
or taking into account the continuity equation 

(6) 
pIti‘ == &Xi’-2 (13) 

pP being used to write the adiabatic-curve we obtain 
equation for a real gas in the following form: 

T, p1 lA-l):.r 

( 1 

1t$ - (14) 

Tz = r; 
(7) 

From equations (11) and (14), having regard to 

when the form of the relation, conforming to an (8) it follows 

ideal gas, is preserved. 2 
In equation (7) X, related to pP and heat 2g 

capacity cp, is determined by the expression J Lt I 
Tdp-tiLr._Y\ 1 RdT 

I 

L’Y _y r _._-.- .-.- .-. 

Cn ---AR .pn 
(8) 

. 

On the basis of equation (5) equation (4) takes 
In [2] it is shown that during integration 

the form 
quantities PT and x/(x -- 1) may be considered 
constant and in this case the integral mean 

d;;+ ;; $p+- ;;T.I*Tdp = 0. 
i’ i 

(9) 
values may be replaced by the arithmetic mean 
values. / 

Henceforward, the mean value of the coefficient 

For an entropy differential it may be written that pT will be designated ,EcP, and for convenience, 
the multiplier X/(X - 1) is preserved without an 

dS = f;m;j dT + i;;jT dp 
upper bar but it is however considered as an 

P average quantity within integration limits. 
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Thus, integrating equation (15) with regard The relations of temperatures and densities 
for (2), we have in a shock wave are connected by 

%Pr . x+ NT, - TJ - 2gRT,(z, - 4~ 

= (PZ - PI)(;; ++)- (16) 

The compressibility factors z1 and z, being at 
different pressures but at one and the same 
temperature (T,). 

Furthermore, since according to equation (2) 

T1=pl- PZ 
gw,R 

and T, = __ 
gw,R 

equation (18) may be presented as 

= (P2 - Pl> (17) 

After transformation, we multiply both parts 
of the latter equation by p2/p1 and obtain 

PT - (zr - Z&P. __ 

g + 2 . 
X-l 

1 
/!iT - (z1 - .&’ 7 

I 

- X + 1} . (x - 1)-l - ;) x {[X (2$r 

Equations (18), (19) and (20) obtained for a 
real gas easily assume the form, usual in the 
shock-wave theory, in application to an ideal 
gas when passing to the condition pT = z1 = z, 

= 1 and x = k. In this case the following well- 
known relations are obtained 

-_ 
(21) 

(23) 

Thus, the equation of the shock-wave adia- With regard to the employment of equations 
batic-curve applied to a real gas is obtained. (18), (19) and (20) it is necessary to determine 
The expression for the ratio of densities is first of all the numerical values of ,i& zl, z2 and x. 
presented as follows : It has already been mentioned that the integral 

~={[42~-1)+1].(X-1)-~+~} 
mean of ,iiT may be replaced by the arithmetic 
mean, i.e. 

Pl 

r x 

(i [ 

X-l I x 2-- PT-(Z1-Z2)T--- 

Zl X 

k’ = 4 x [(W”)l + (cL!d21- 

The formula for pT is obtained from expression 

-x+1 
> 

(X-l)-‘;+1 . 
) 

(5) in which the partial derivative is determined 

(19) 
by differentiating equation (2). As a result, the 
value Of pT assumes the form [2] 

From the state equation for a real gas we aZ 

obtain the following for the temperature ratio 
PT=z-p % T’ 0 

T, P2 Pl Zl ~_ = ._ . _ . .- 
Tl ~1 ~2 ~2’ 

In a similar fashion from equation (7) by 
differentiating equation (2) we obtain 
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Partial derivatives 

are determined by graphical di~er~ntiation. 
To determine both ~_ir, zI, 2% and x according 

to formula (8) where pLp enters, it is necessary 
to possess initial and final data on pressures and 
tempera~es, essential for using a compressibil- 
ity diagram. Therefore, to the first approximation 
these values are defined from equations (21) 
(22) and (23) applied to an ideal gas. Then, upon 
calculation of the above coefficients we turn to 
equations (18), (19) and (20), using thus the 
method of successive approximations. To find 
the heat capacity cp, entering into equation 
(8), it is possible to make use of the diagram 
given in [3], in which the relation between the 
correction cp -- cpO and the above parameters 
is presented. 

When using the shock-wave adiabatic-curve 
equation applied to water vapor, the coefficients 
pi, pD, z1 and zz are found from the tables for 
superheated steam [4]. The colnpress~bility 
factors are determined as 

the parameters p, I‘ and T being tabular. The 
same tabular data may be used when determining 
the partial derivatives (&/+)T and (~3z,li?T)~ and, 
consequently, pr and pp. The heat capacity c, 
up to 300 atm may be taken from Vukalovic~s 
tables [5] and above 300 atm, from the experi- 
mental data [6] over a wide range of pressures 
and temperatures. 

The relations obtained may be also expressed 
in terms of the velocity coefficient in front of a 
shock wave, i.e. X,. Between the velocity 
coefficients in front of and behind a shock wave 
in a real gas there exists the same ratio as in the 
case of an ideal gas, viz. : 

A,. A,= 1. (24) 

We will derive relation (24) for a real gas. 
When a medium passes through a shock-wave 

front [7], the isentropic equation of the medium. 
considered as a real gas, is presented in just the 
same form as for the ideal gas, namely: 

pt.? .-: const. (25) 

It is necessary to mention that the integral 
mean of the isentropic index of a real gas ii in 
equation (25) and that of the exponent .Y in 
equation (7) possess different signi~cance. As was 
shown in 121. the quantity “ii” in equation (25’) 
represents a “volumetric” exponent of an 
adiabatic curve. The writing of equation (7) has 
an advantage over equation (25). since the 
quantity S/(X ---- 1) is subjected to changes 
considerably less than “E”, and this is of great 
importance if integrating the corresponding 
expressions, for example, equation (IS). 

111 writing down equation (25) we employ as 
qnalitativ~ a derivative as possible in principle 
for a real gas, to illustrate condition (24). the 
analytic~1 value of the exponent “n” not beirlp 
used in calculation equation. 

According to equation (25) we can write 

and taking into account that 

where a is the sonic velocity, we have 

a2 :-z gptf)~. (281 

In [8] it was shown that 

n3 = 4’%gRT (29) 

where according to the values ofp~ and ,+ 

From equations (28) and (29) taking equation (2’) 
into account the following is obtainable : 

(31) 

Thus, from the equation di =:= AZ) d$) and 
equation (26) it may be written that di ==z 
_- .4~p dv. Hence, taking into account equation 
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(27) upon integration and transformation we 
obtain 

On the basis of equation (1) we have 

Hence, according to equation (28) the energy 
equation may be written as follows 

From equations (38) and (39) we have 

or 

WI. w, = u2 CT (9 

A1 . A2 = 1, i.e. condition (24) is proved. 

The relationship between A, and A, in front of 
and behind a shock wave so obtained makes it 
possible to present equations (18), (19) and (20) 
in terms of A1. Taking into account that 

P2 Wl Al -_=-_=- 

Pl w2 h2' 

we obtain 

- 4 
G-1 (34) gI = (2; [pr - (zl - Z2)T . x+] 

where a, is the sonic velocity in stationary gas. 
When w = aer we have a = acr, then 

af = a2 
ii+1 

CT - - 2 (35) 

where uer is the critical velocity. 
From equation (35) taking into account (28) 

we have 

?i+1 ii-l 
Pl = __ 2?i * PI. @, - rP& 

E+l ?-i--l 
Pz = ___ 2n . pz . afr - ~ P& 06) 2?i 

or 

p2 - pl = acr 2 f&1(,2 - PI) 

+ q&w: - pzw$ 

From equations (12) and (13) we have 

P2 -PI = Pl$ - P& (37) 

Consequently, in this case equation (36) assumes 
the form 

A--1- $. 

Pz- Pl cr 
(38) 

On the other hand, on the basis of equation 
(13) equation (37) may be also presented as in [9] 

Pz - Pl = P2W2W1- PlYW2 = WlW2(P2 - Plh (39) 

- x + 1 > (x - 1)-l. “f - 1 1 x u x 2CT 
Z!2 

- 1 1 + 1 I (x - - . 1)-i “; > _l(41) 

I > 
-1 

+ 1 . (x - l)-’ - A; . (43) 

It has been already mentioned that the 
expression x/(x - 1) is understood as the 
arithmetic mean, i.e. 

X 1 
p_- 
x-l -( 

Xl x2 ~___ 
2 &-I+,-, 1 

consequently, 

X= 
x1(2x2 - 1) - x, 

Xl + X, - 2 * (44) 

In all our equations the quantity x is defined by 
relation (44) and to calculate both x1 and x2 it is 
necessary only to use equation (8). 

When passing from a real to an ideal gas, for 
which jiT = z1 = z, = 1 and x = k, equations 
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(41) and (43) assume the form well-known in gas 
dynamics [IO] 

. Xd -1 ) 

(46) 

In conclusion it should be noted that the 
ratios obtained for a direct shock-wave make it 
possible to study easily shock waves with the 
front shock-wave inclined to the direction of 
flow, i.e. to investigate oblique shock-waves. 
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Abstract-h the present paper problems on shock waves are considered on the basis of the equation 
of state, and important relations for high and superhigh pressure regions are obtained. 

Rbume-Cet article considtre les ondes de choc a partir de I’Cquation d-&at, et ktablit des relations 
importantes pour des regions de pressions klevees et t&s Clevks. 

Zusammenfassung-tn der Arbeit werden Stosswellenprobieme auf der Basis der Zustandsgleichung 
betrachtet und wichtige Beziehungen fiir hohe und superhohe Druckbereiche erhalten. 


